Laboratory Investigations of Multidrug-Resistant *Candida auris* – Impact & Lesson Learned

Sudha Chaturvedi, Ph.D.
Mycology Laboratory
Wadsworth Center
What do we know about *Candida*

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Candida auris</th>
</tr>
</thead>
<tbody>
<tr>
<td>• They are gut bugs</td>
<td>• Skin bug</td>
</tr>
<tr>
<td>• Mostly antifungal susceptible</td>
<td>• Mostly resistant to antifungals</td>
</tr>
<tr>
<td>• Rarely cause outbreak</td>
<td>• Frequently causing outbreaks</td>
</tr>
</tbody>
</table>
Why are we concerned about *Candida auris*?

- Highly drug-resistant
- Patients can become colonized and develop invasive infections
- Spreads in healthcare settings
C. auris cases reported in >35 countries
Spreads after introductions from abroad

- Cases are a result of introductions from abroad followed by local transmission
- Majority of cases don’t have direct links to healthcare abroad
Four Genotypes/Clades

Fifth Genotype/Clade

>200,000 SNPs apart

Chow NA et al Emerg Infect Dis 2019, 2019;25(9):1780-1781

Chow NA et al Lancet ID 2018, 18:1377
A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

The rise of Candida auris embodies a serious and growing public health threat: drug-resistant germs.

By Matt Richtel and Andrew Jacobs

April 6, 2019

Last May, an elderly man was admitted to the Brooklyn branch of Mount Sinai Hospital for abdominal surgery. A blood test revealed that he was infected with a newly discovered germ as deadly as it was mysterious. Doctors swiftly isolated him in the intensive care unit.
Wadsworth Center Laboratories
Division of Infectious Diseases

- Arbovirology
- Bacteriology
- Biodefense
- Bloodbore Viruses
- Cellular Immunology
- Diagnostic Immunology
- Mycobacteriology
- **Mycology**
- Parasitology
- Rabies
- Virology

Hazen & Brown (1955)

NYSTATIN

Morris Gordon

Cryptococcal antigen test

1963
Mycology Laboratory @ Wadsworth Center: Scope

• **Reference Services (Fungal ID)**
 - Culture
 - MALDI-TOF MS (Bruker) - 2013
 - ITS-PCR/Sequencing - 2010
 - E-test (Yeasts)
 - Microbroth Dilution (Yeasts & Molds)
 - YO9 (Yeasts)
 - Real time PCR assays:
 - *Histoplasma capsulatum* (2011)
 - *Blastomyces dermatitidis* (2011)
 - *Exserohilum rostratum* (2013)
 - *Candida spp.* (2016)

• **Applied Research**
 - Fungal virulence mechanisms (NIH)
 - Antifungal test innovation – (Industry Contracts)
 - Molecular Test Development (WC CLRS)
 - *Pseudogymnoascus* (‘Bat White-Nose’) (NSF & FWLS)

1,100 to 1,300 Samples/Year (99.9% isolates)
CDC–Antibiotic Resistance Laboratory Network (2016...)

Mycology Lab
Candida (glabrata)
Resistance Testing
What did we find?
Unprecedented outbreak of *Candida auris* in NY

What did we do?
180 degree turn around and re-focus

- Writeup of protocols for shipping instructions, sample processing, report release, etc.
- Writeup of advisories with Epi to educate healthcare professionals on *C. auris*
- Enrichment of in-house MALDI library for *C. auris* ID
- Molecular assay development for rapid *C. auris detection* from surveillance samples
- Provid SOPs - *C. auris* culture, MALDI & real-time PCR to Clinical/ Public/Private Laboratories in NY and other states in the US
- Weekly/bi-weekly/monthly conference calls/meetings with NYSDOH Epi/ CDC/WC
- Staff recruitment
Culture/Identification - *C. auris* Surveillance Samples

Laboratory Workflow Pre-PCR Era

![Image of laboratory workflow](image)

- **Surveillance Samples (Swabs & Sponges)**
 - **Non Selective Agar (SAB+)**
 - Growth → **MALDI**
 - *Candida auris & Candida spp.*
 - Sanger Sequencing for Phylogenetic analysis
 - Antifungal susceptibility testing for resistance profile
 - **Selective Agar (Salt + Dextrose → Dulcitol)**
 - Growth → **MALDI**
 - *Candida auris*
 - No Growth → **Negative culture**
 - **Cloudy**
 - **Selective Broth (Salt + Dulcitol)**
 - No Growth → **SAB+**
 - Growth → **MALDI**
 - *Candida auris*

Welsh et al, 2017. JCM, 55:2996

Culture + ID = 4 to 14 days
Total Number of Samples Processed
(August 2016 to April 2019)

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Isolates suspected of C. auris</td>
<td>746</td>
</tr>
<tr>
<td>Surveillance (Patient)</td>
<td>9,676</td>
</tr>
<tr>
<td>Surveillance (Environmental)</td>
<td>4,123</td>
</tr>
<tr>
<td>Admission Screening</td>
<td>4,871</td>
</tr>
<tr>
<td>Total</td>
<td>15,453</td>
</tr>
</tbody>
</table>
Surveillance Sample Testing Strategies

Axilla, Groin, Nares (August 2016)
Axilla/Groin & Nares (November 2016)
Nares/Axilla/Groin (January 2018)

Point Prevalence Screening

Surveillance Samples (11,035)
931+ve for *C. auris* (8.4%)
Candida auris in NY from August 2016... Endemic or Transient?

Clinical Cases (422)
Colonized Cases (621)
Colonized → Clinical (63)
Environmental = (152)

190 facilities including 69 hospitals, 117 NH, 1 LTACH, 2 Hospices, & 1 VA Health System
Candida auris Cases in New York State by Month, May 2013 - September 2019

Month of First Positive Culture/PCR for Candida

C. haemulonii → C. auris
Heavy Colonization of Skin & Mucosa of 350 Colonized Cases

Unpaired Samples

Paired Samples
Heavy Colonization of Hospital Surfaces

C. auris CFU/Sponge

Porous
- Linen
- Carpet
- Gowns

Non-porous
- Bed rail
- Window sill
- Bathroom surface
- Call bell
- Counter top
Antifungal Resistance Pattern of NY C. auris isolates

- FLU = Fluconazole
- AMB = Amphotericin B
- ECHI = Echinocandins

Pan Resistant Isolates = 3

- FLU: 99%
- FLU+AMB: 61%
- FLU+ECHI: 1%

Mutation:
- ERG11
- FKS1/FKS2
Candida auris Prevalence

Patients

- Candida parapsilosis: 12.15%
- Candida albicans: 8.90%
- Candida glabrata: 8.90%
- Candida auris: 10.07%
- Mold: 1.00%
- UNSAT Not Tested: 1.33%
- Bacterial: 7.17%
- No Growth: 51.50%

Environment

- Negative
- Other yeasts (3.5%)
- C. auris (3.0%)
- C. parapsilosis (4.5%)
NY Outbreak is dominated by South Asia Clade I

Sanger Sequencing of Ribosomal genes
Highly Sensitive (one *C. auris* CFU/PCR reaction)

Highly Specific (No cross-reaction to yeasts/molds/bacteria/parasites)

Rapid (4 h)

Drawback- Manual nature of the assay

![Flowchart Diagram](image)
Bruker Expands Portfolio for Testing of Candida Auris, an Emerging, Multidrug-Resistant Pathogen in Human Healthcare

Fungiplex Candida Auris RUO Real-Time PCR Kit

PCR reagents for test + controls

Leach et al 2018, JCM, 56:E01223-17
A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris.

Ahmad A¹, Spencer JE¹, Lockhart SR², Singleton S², Petway DJ¹, Bagarozzi DA Jr¹, Herzegh OT¹.
A Rapid and Automated Sample-to-Result *Candida auris* Real-Time PCR Assay for High-Throughput Testing of Surveillance Samples with the BD Max Open System

L. Leach, A. Russell, Y. Zhu, S. Chaturvedi, V. Chaturvedi

Sensitivity

= One *C. auris* CFU/PCR Reaction

TAT

= 2 h

Total samples

= 100-150 samples/Day
Modified Workflow Post PCR Era

PCR

Negative
- No Further Test

Positive
- Culture (Dulcitol Broth)
- MALDI
- **C. auris**

Significant cut down on
- Efforts
- Supplies
- $ amount
Testing doesn’t end with real-time PCR assay!

• Need *C. auris* isolate with confirmed ID to do antifungal susceptibility testing, genotyping, etc.

Bruker MALDI-TOF MS – FDA approved database April 2018

bioMérieux VITEK MS - FDA approved database December 2018
Continuing Challenges

- Mycology training/re-training needed in Clinical, Public Health & Commercial Laboratories
- Availability of selective medium (Dulcitol) is restricted to one vendor https://s2cm.com/product/salt-sabouraud-dulcitol-broth-ssdb/
- LDT for C. auris is not FDA approved
- MALDI-TOF MS expensive technology-not easily available
- AST – 50% inhibition by naked eye –need extensive practice
Antimicrobial Resistance Laboratory Network
Northeast Regional *Candida auris* Training Workshop
Wadsworth Center – Mycology Laboratory
Albany, NY
November 4 - 6, 2019

Swab and Sponge Testing by PCR and Culture
Antifungal Susceptibility Testing by Microbroth and E-test
MALDI-TOF MS Identification of Yeasts
Packaging and Shipping of Surveillance Samples

Offered by: New York State Department of Health-Wadsworth Center Mycology Laboratory
And: Association of Public Health Laboratories (APHL)

This project was funded with federal funds from a federal program. The training materials was submitted by Cooperative Agreement #NU50CH000516 from Centers for Disease Control and Prevention (CDC) and Association of Public Health Laboratories (APHL). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.
SUMMARY

- Total Surveillance samples tested 20,661 including 15,026 point prevalence (10,521 swabs & 4,505 sponges), & 5,635 admission screening.

- Clinical cases 422 & colonized cases 623 as of November 5, 2019. Approximately 10% of colonized cases converted into clinical, a major concerning factor.

- Successful use of one swab of Nares/Axilla/Groin for all PPS (January 2018).

- Development of PCR assays (manual & automated) and their impact on infection control practices.

- Relatively heavier colonization of nares than axilla/groin.

- Predominance of South Asia Clade I.

- Isolation of three Pan-resistant isolates.
Candida auris in the U.S.

May 2017

July 2018

July 2019
Think Fungus

Fungal diseases cost an estimated $7.2 BILLION annually in the US

- $4.5 billion for hospitalizations
- $2.7 billion for outpatient visits.

Acknowledgements

WC Mycology Lab Staff

Current
- YanChun Zhu
- Lynn Leach
- Brittany O’Brien
- Rokebul Anwar
- Jiali Liang
- Dr. Vishnu Chaturvedi

Past
- Alexis Russell
- Samantha Frye (MLS student)
- Alexandra Clarke
- Ayodele Ojebode (APHLFellow)
- Dr. Amanpreet Singh

Other Staff
- Geetha Nattanmai
- Tom Miller
- Sara Griesemer
- Amy Chiefari
- Mark Meola
- Dr. Ron Limberger
- Dr. Jill Taylor

HAI (NYSDOH)
- Ms. Monica Quinn
- Dr. Eleanor H. Adams
- Dr. Emily C. Lutterloh
- Dr. Elizabeth Dufort
- Dr. Karen Southwick
- Ms. Coralie Bucher
- Mr. Brad Hutton
- Dr. Nina Ahmad
- Dr. Belinda Ostrowsky
- MARO Staff

CDC
- Dr. Sharon Tsay
- Dr. Snigdha Vallabhaneni
- Dr. Shawn Lockhart
- Dr. Tom Chiller
- Dr. Rory Welch

Funding
- CDC-ARLN
- WC-CLRS

Media, Tissue Culture & Sequencing Cores