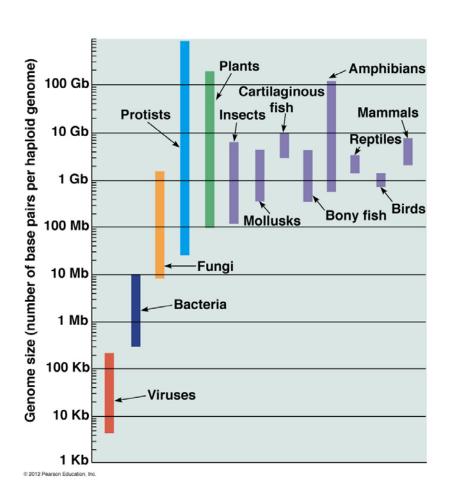


Amplicon Based Next Generation Sequencing for Parasitology

54th Annual Region I ASM Meeting November 7, 2019

How Parasitologists Work(ed)



"Whatever it is, it's very, very little."

NEW YORK STATE Of Health

Wadsworth Center

Can Parasitology Use Next Generation Sequencing?

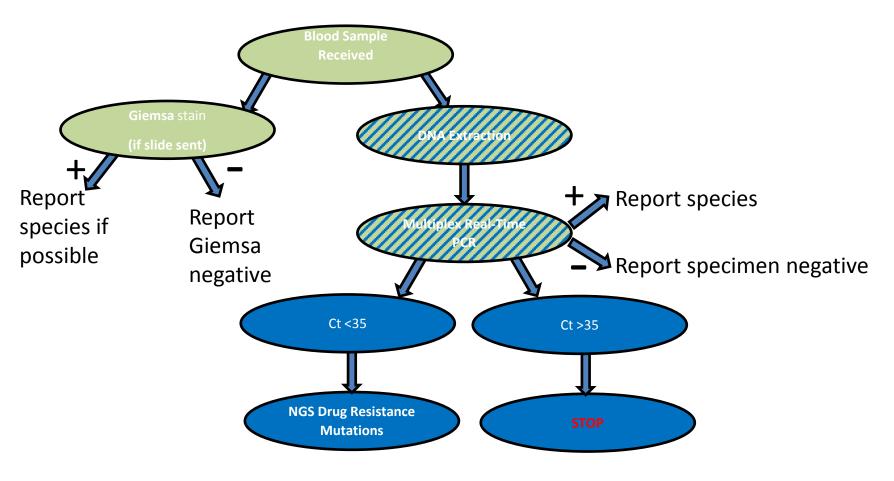
Genomes are larger

Most parasites cannot be cultured primary specimens

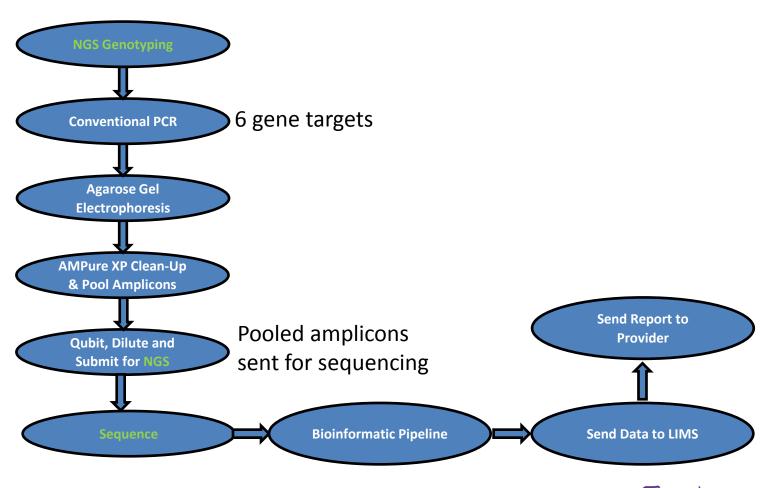
Some genomes are very AT rich

P. falciparum 80%

Eucaryotes



P. falciparum Targeted Next Generation Sequencing for Drug Resistance



What is NYS Doing Currently to Test for Malaria Infections?

P. falciparum NGS Workflow

Gene	Amplicon Length (bp)	Resistance Mutations	Drug(s)		
Pfcrt	3109	M74I, N75E , K76T , A220S, Q271E, N326S, I356T, R371I	Chloroquine		
Pfdhfr	2067	A16V, N51I, C59R, S108N/T , I164L	Proguanil, Pyrimethamine		
Pfdhps	2817	S436A/F, A437G , K/G540E , A581G, A613S/T	Sulfadoxine		
Pfmdr1	4155	N86Y, Y184F, S1034C, N1042D, D1246Y	Amodiaquine, Lumefantrine, Quinine		
Pfcytb	937	1258M, Y268S/C/N	Atovaquone		
Pfk13	2120	F446I, N458Y , M476I, Y493H , R539T , I543T , P553L, R561H , C580Y	Artemisinin		

Example Report

Plasmodium falciparum Molecular Drug Resistance Prediction- Targeted Next Generation Sequencing

Predicted Resistance Profile*

Chloroquine:

Atovaquone:

Susceptible (suggested)

Artemisinin:

Susceptible (suggested)

Pyrimethamine/Proguanil:

Susceptible (suggested)

Susceptible (suggested)

Multi-drug:

Susceptible (suggested)

Susceptible (suggested)

High-Confidence Mutations Detected*

crt (chloroquine):

cytb (atovaquone):

k13 (artemisinin):

dhfr (pyrimethamine/proguanil):

dhps (sulfadoxine):

mdr1 (multi-drug):

High-confidence mutation

No high-confidence mutation

No high-confidence mutation

No high-confidence mutation

No high-confidence mutation

In the literature, mdr1 (multidrug resistance 1), is a gene associated with resistance for several antimalarials.

A result of "No high-confidence mutation" does not rule cut resistance due to unknown contributory mutations present elsewhere in the genome.

Majority of Malaria is Coming From West Africa

Nigeria - 63

Ghana - 41

Ivory Coast - 33

Guinea- 32

Countries with less than 10 samples

Combine the drug resistance sequences with epidemiologic data

- travel
- prophylaxis
- treatment

Percentage of Drug Resistance Mutations

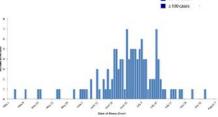
Gene	% Mutant	Drug(s)		
PfCrt	30	Chloroquine		
PfDhfr	95	Proguanil, Pyrimethamine		
PfDhps	98	Sulfadoxine		
PfMdr1	63	Amodiaquine, Lumefantrine, Quinine		
PfCytb 0		Atovaquone		
PfK13	0	Artemisinin		

In 2018 and the first half of 2019 254 *P. falciparum* specimens were collected from patients who travelled to 30 different countries.

WHO recommendation

- · artemether + lumefantrine
- · artesunate + amodiaquine
- · artesunate + mefloquine
- dihydroartemisinin + piperaquine
- artesunate + sulfadoxine pyrimethamine (SP)

Cyclospora NGS Genotyping



Foodborne Outbreaks of Cyclosporiasis

2013 – Salad mix and cilantro – 631 cases

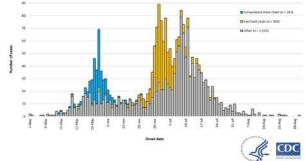
2014 – Cilantro in Texas – 304 cases

2015 - Unknown vehicle & cilantro - 546 cases

2016 – Unknown vehicle – 384 cases

2017 – Unknown vehicle – 1,065 cases

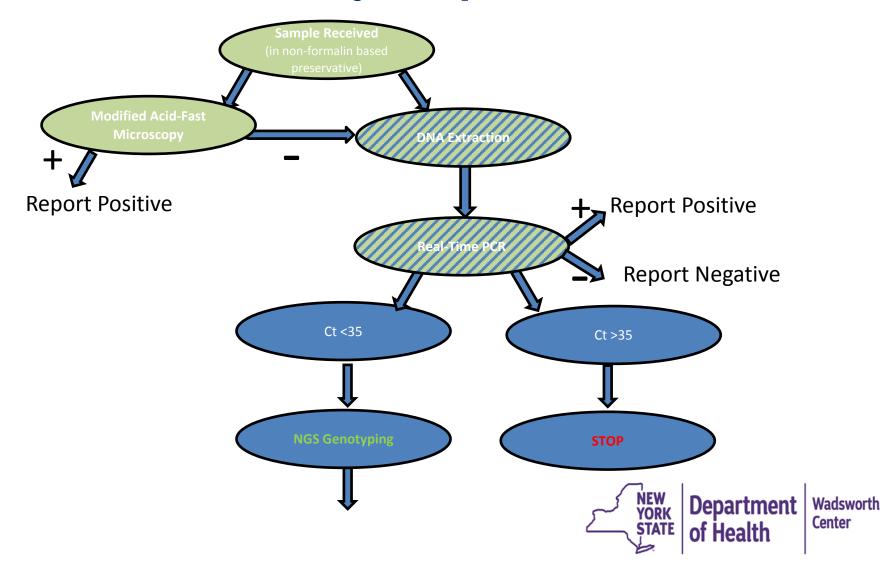
Foodborne Outbreaks of Cyclosporiasis

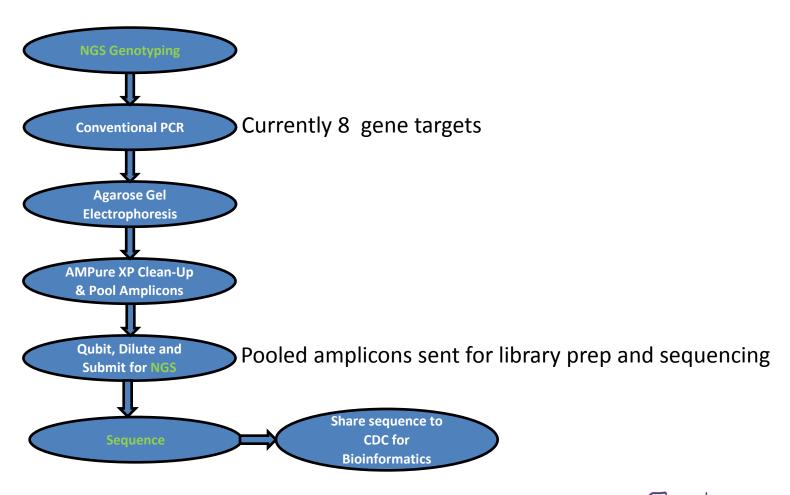

2018 – Multiple Outbreaks– 2,299 cases

Prepackaged vegetable trays (broccoli, cauliflower, and carrots)

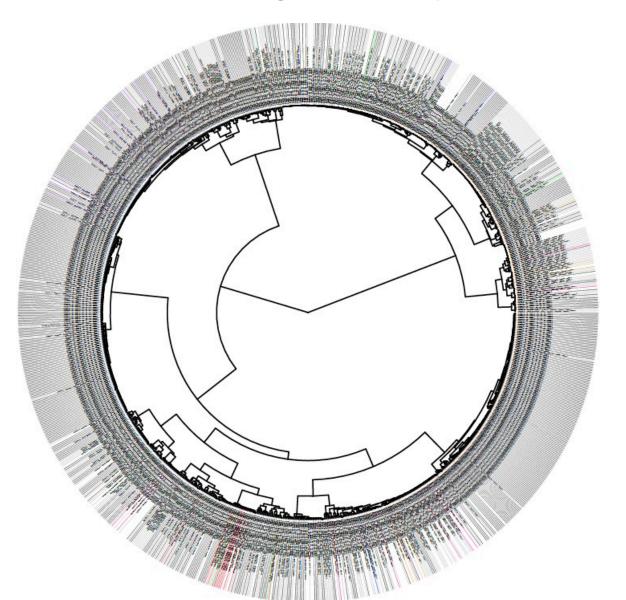
Salads at a fast food chain salads (carrots, romaine, spinach, kale, and varietal red leaf lettuce)

2 clusters associated with basil


Multiple clusters associated with cilantro


2019 – Multistate basil outbreak - 1,696 cases

What is NYS doing currently for *Cyclospora*?



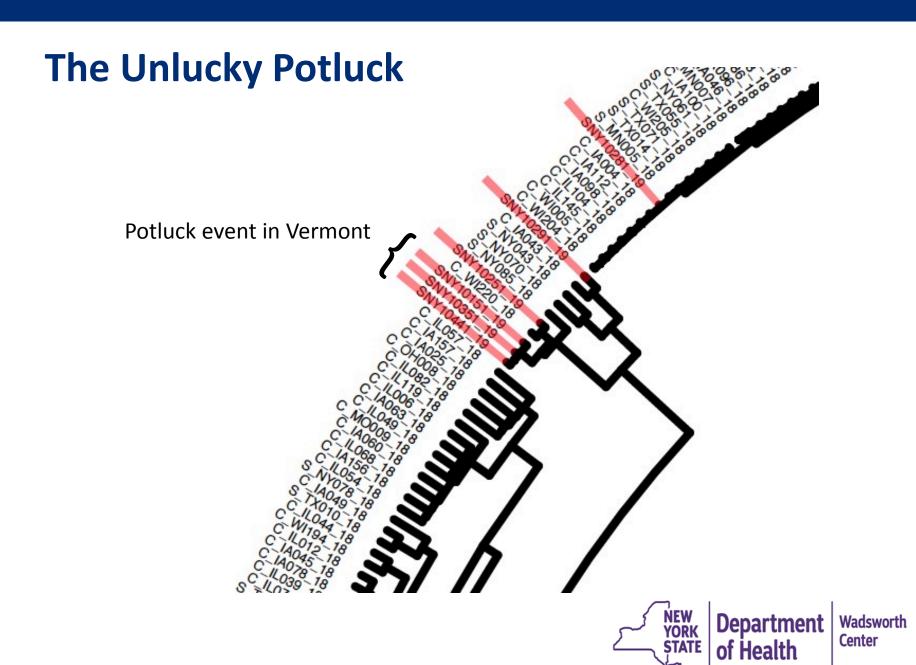
Cyclospora NGS Workflow

Dendogram of Cyclospora Samples

Dark grey – 2018

Light Grey/White – 2019

Colors - Outbreaks



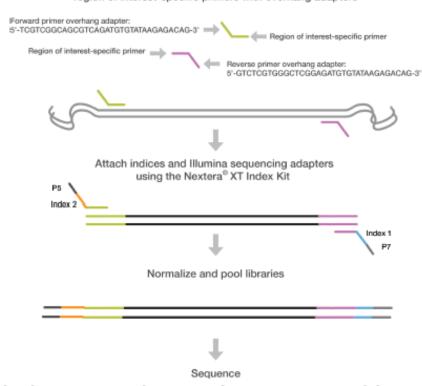
Genotyping Links Cases Without Epi Data

Cases linked to basil consumption in upstate NY

Benefit of Cyclospora Genotyping

- ➤ Distinguish travel related cases from foodborne illness
- Link cases to help focus identification of the food vehicle
- Reduce the number of cases by identifying the source faster
- ➤ Link the contaminated food, or contaminated water where the food was grown, to cases

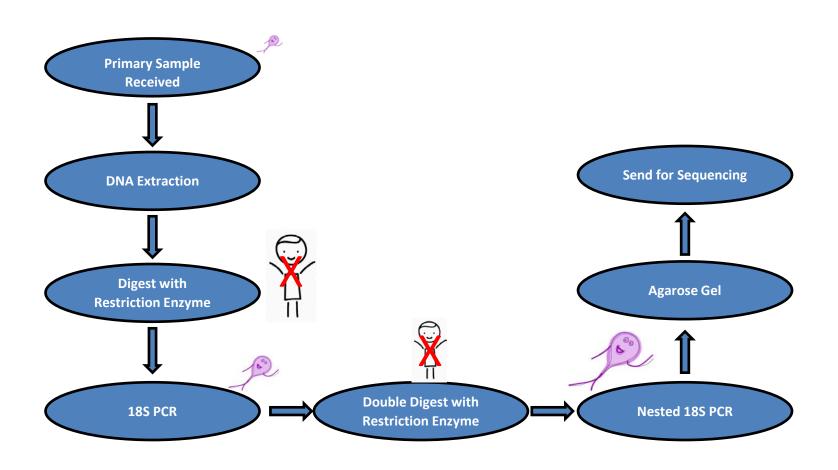
NGS Universal Parasite Diagnosis (UPDx)


Metagenomic Sequencing of Primary Samples

1%S Metagenomic Sequencing Library 18S Preparation for MiSeq

18S V3 and V4 Amplicon Workflow

PCR amplify template out of genomic DNA using region of interest-specific primers with overhang adapters


Target the gene of interest

- Common primer sequence for all parasites
- ✓ Primers don't recognize human, plant, bacteria, yeast,
- ✓ Different between primers to distinguish parasites

User-defined forward and reverse primers that are complementary upstream and downstream of the region of interest are designed with overhang adapters, and used to amplify templates from genomic DNA. A subsequent limited-cycle amplification step is performed to add multiplexing indices and Illumina sequencing adapters. Libraries are normalized and pooled, and sequenced on the MiSeq system using v3 reagents.

Universal Parasite Diagnostics (UPDx)

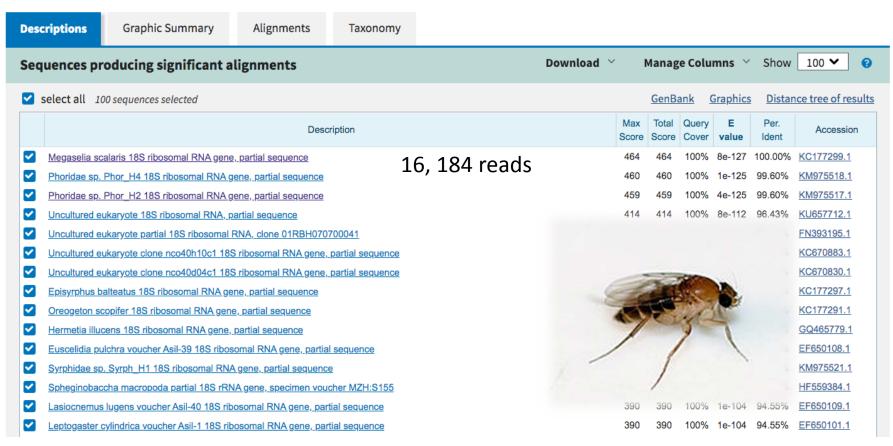
UPDx Utilized on Parasitology Mystery Samples!

Worm reportedly sucked up in a straw at a fast food restaurant and similar ones found in the ice and a floor drain

Eisenia sp. - "redworm", a species of earthworm adapted to decaying organic material

Description	Max score	Total score	Query cover	E value	Perc. ident	Accession
Eisenia fetida 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	1762	1762	100%	0.0	100.00%	EF534709.1
Eisenia andrei isolate SR9H 18S ribosomal RNA gene, partial sequence	1757	1757	100%	0.0	99.90%	KF205933.1
Eisenia fetida gene for 18S ribosomal RNA, partial sequence	1757	1757	100%	0.0	99.90%	AB558505.1
Eisenia fetida gene for 18S rRNA, partial sequence	1757	1757	100%	0.0	99.90%	AB076887.1
Eisenia fetida 18S rRNA gene	1753	1753	100%	0.0	99.79%	X79872.1
Aporrectodea trapezoides isolate SR9P 18S ribosomal RNA gene, partial sequence	1751	1751	100%	0.0	99.79%	KF205934.1
Eiseniona gerardoi voucher UCMLT 60001 18S ribosomal RNA gene, partial sequence; mitochondrial	1751	1751	100%	0.0	99.79%	KF737140.1
Aporrectodea trapezoides isolate AT 18S ribosomal RNA gene, partial sequence	1748	1748	100%	0.0	99.69%	HQ621897.1
Eisenoides carolinensis 18S small subunit ribosomal RNA gene, partial sequence	1746	1746	100%	0.0	99.69%	HQ728903.1
Lumbricus terrestris 18S ribosomal RNA gene, partial sequence	1746	1746	100%	0.0	99.69%	HQ691211.1
Dendrodrilus rubidus isolate CE522 18S ribosomal RNA gene, partial sequence	1746	1746	100%	0.0	99.69%	GU901868.1

Larvae found in Breast Milk



And the larvae are from..... Yeast?

Organism	Blast Name	Score	Number of Hits	Description
<u>Eukaryota</u>	eukaryotes		104	
. Fungi	fungi		98	
Saccharomycetales	budding yeasts		94	
Candida/Lodderomyces clade	budding yeasts		<u>91</u>	
<u>Candida</u>	budding yeasts		90	
Candida metapsilosis	budding yeasts	1557	1	Candida metapsilosis hits
<u>Candida parapsilosis</u>	budding yeasts	1557	<u>26</u>	Candida parapsilosis hits
<u>Candida orthopsilosis</u>	budding yeasts	1552	Z	Candida orthopsilosis hits
Candida orthopsilosis Co 90-125	budding yeasts	1552	1	Candida orthopsilosis Co 90-125 hits
<u>Candida tropicalis</u>	budding yeasts	1546	<u>33</u>	Candida tropicalis hits
Candida viswanathii	budding yeasts	1546	3	Candida viswanathii hits
Candida neerlandica	budding yeasts	1546	<u>3</u>	Candida neerlandica hits
<u>Candida sojae</u>	budding yeasts	1546	2	Candida sojae hits
Candida tetrigidarum	budding yeasts	1546	2	Candida tetrigidarum hits
Candida labiduridarum	budding yeasts	1546	<u>3</u>	Candida labiduridarum hits
<u>Candida frijolesensis</u>	budding yeasts	1546	<u>3</u>	Candida frijolesensis hits
<u>Candida albicans</u>	budding yeasts	1546	<u>3</u>	Candida albicans hits
<u>Candida sp. NYNU 14772</u>	budding yeasts	1546	1	Candida sp. NYNU 14772 hits
Candida cf. neerlandica NRRL Y-27939	budding yeasts	1546	1	Candida cf. neerlandica NRRL Y-27939 hits
Candida buenavistaensis	budding yeasts	1546	1	Candida buenavistaensis hits
Lodderomyces sp. BG090819.10.1.1.3.32	budding yeasts	1546	1	Lodderomyces sp. BG090819.10.1.1.3.32 hits
Candida sp. Y574	budding yeasts	1546	1	Candida sp. Y574 hits
Candida aquae-textoris	budding yeasts	1546	1	Candida aquae-textoris hits
Candida sp. S42-12	budding yeasts	1546	1	Candida sp. S42-12 hits

Deep Sequencing Reveals Megaselia scalaris

"thrive predominately in moist unsanitary vicinities such as dumpsters, trash containers, rotting meat, vegetable remains, public washrooms, homes, and sewer pipes"

coffin fly, scuttle fly

UPDx Metagenomic Sequencing for Complex Samples

Can we do deep sequencing on blood specimens to detect *Babesia*, *Plasmodium sp. Trypanosoma cruzi*, *Leishmania sp.*, filarids....?

What about something even more complex like a stool sample?

- inherently variable
- > plant, yeast (etc.) DNA present in addition to human DNA
- PCR inhibitors

Thank you

Parasitology Lab

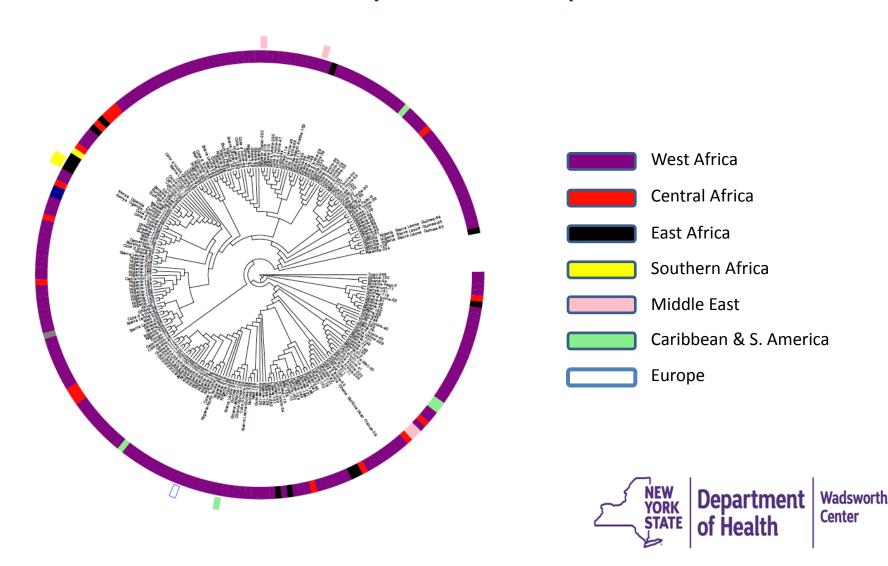
Kim Mergen, Brooke Clemons, Noel Espina, Allen Teal

Wadsworth - Advanced Genomics Technology Center

Erasmus Schneider Matt Shudt Melissa Leisner

CDC Malaria Group

Eldin Talundzic


CDC Cyclospora Group

Yvonne Qvarnstrom Joel Barratt

Funding from the CDC - Epidemiology and Laboratory Capacity Advanced Molecular Detection and Parasitology Sections

Cladogram using Approximate Likelihood Algorithm for *P. falciparum* Samples

NGS performed by Advanced Genomics Technology Center

- NexteraXT library kit half volume reactions, with 2.5uL amplicon pool @ 0.2ng/ul
- Sequenced on a Miseq using a 300 cycle v2 sequencing kit (150bp paired ends) nano, micro or standard flowcell
- Loaded onto Miseq at 7-8pM, avg lib size ~420
- Samples included in runs with other organisms bacterial whole genomes, viral samples, 1% PhiX spike-in

