Alfred DeMaria, Jr., M.D. Massachusetts Department of Public Health

C

<u>osentio</u>

rdises in

Fapp

Mosquitoborne Arbovirus Diseases Indigenous to the United States (New England)

	Family, Genus	Distribution
Eastern equine (EEE)	Togaviridae, Alphavirus	Eastern U.S.
Western equine (WEE)	Togaviridae, Alphavirus	Western U.S.
St. Louis (SLE)	Flaviviridae, Flavivirus	United States
La Crosse (LAC)	Bunyaviridae, Bunyavirus	Midwest, Eastern, Southern U.S.
Venezuelan (VEE)	Togaviridae, Alphavirus	United States (rare)
West Nile (WNV)	Flaviviridae, Flavivirus	United States (since 1999)
Jamestown canyon	Bunyaviridae, Bunyavirus	United States

Mosquitoborne Arbovirus Diseases Potentially Indigenous to the United States or Territories

	Family, Genus	Distribution
Dengue	Flaviviridae, Flavivirus	Puerto Rico, USVI, Guam, Samoa, Florida
Chikungunya	Togaviridae, Alphavirus	Puerto Rico, USVI, Florida
Zika	Flaviviridae, Flavivirus	Puerto Rico, USVI, Samoa, Marshall Islands, Florida, Texas

Factors for Vectorborne Diseases

- *****Reservoir species
- Infectious agent in environment
- **Competent vector**
- ***Infected vector**
- *****Susceptible host
- ***Opportunity for exposure**

Vol. 28

Outbreak of Encephalitis in Man Due to the Eastern Virus of Equine Encephalomyelitis^{*}

ROY F. FEEMSTER, M.D., DR.P.H., F.A.P.H.A. Director of the Division of Communicable Diseases of the Massachusetts Department of Public Health, Boston, Mass.

A BOUT the middle of August, 1938, cases of encephalomyelitis in horses were recognized in Massachusetts and it was soon ascertained that an epidemic of considerable proportions existed. On August 12 a child from Brockton died of encephalitis, and when a second child from the same city died on August 30 a rumor spread that the two had been victims of the disease prevalent among horses.

On Sontombor 1 the Massachusette

All five of these cases occurred within 15 miles of each other, the nearest being 20 miles southeast of Boston. An interesting coincidence was that they had occurred in essentially the same area as the equine disease. Because of this fact and also on the chance that this was just the beginning of an outbreak similar to the one at St. Louis, the department arranged for virus studies on any fatal cases that might

Eastern Equine Encephalitis Virus

- * Alphavirus genus, family Togaviridae
- ***** First isolated in 1933
- First human case confirmed by isolation from brain tissue in 1938
- * Culiseta melanura is primary enzootic vector
- * Aedes vexans, Ochlerotatus canadensis, Coquillettidia perturbans are putative bridge vectors
- * Passerine birds are primary amplifying hosts

Eastern Equine Encephalitis Clinical Course

- * Abrupt onset fever, chills, headache, muscle aches, nausea and vomiting
- * Progressive disorientation, discoordination
- * Seizures, coma
- ***~30-50%** mortality
- ***~80% residual neurological deficits**

Prevalence of Clinical Signs, Symptoms, and Laboratory Abnormalities <u>on</u> <u>Hospitalization</u> among 36 Patients with Eastern Equine Encephalitis.

VARIABLE	Prevalence (% of Patients)
Symptoms and signs	
Fever	83
Headache	75
Nausea and vomiting	61
Malaise and weakness (nonfocal)	58
Confusion	44
Myalgia and arthralgia	36
Neck stiffness*	36
Plantar reflex	29
Chills	25
Seizures†	25
Weakness (focal)	23
Abdominal pain	22
Respiratory symptoms	11
Cranial-nerve palsies‡	8
Sore throat	8
Diarrh ea	8
Photophobia	3
Laboratory findings§	
Pleocytosis	97
Elevated protein concentrations in cerebrospinal fluid	94
Elevated red-cell count in cerebro- spinal fluid	77
Leukocytosis	69
Hyponatremia	60

1.Fever, headache, other symptoms

2. Confusion, neck stiffness, etc.

Deresiewicz RL et al. N Engl J Med 1997;336:1867-1874.

Results of Neuroradiographic Studies in 32 Patients with Eastern Equine Encephalitis.

ANATOMICAL SITE OR	CT SCAN	MRI SCAN
	(N = 32)	(N = 14)

no. with abnormal findings*

Basal ganglia†	18	10
Thelemus	8	10
Brain stem	3	6
Cortex	4	5
Periventricular area (focal lesions)	0	2
Meninges	2	0‡
Hydrocephalus	1	0
Any abnormality	21	13

Deresiewicz RL et al. N Engl J Med 1997;336:1867-1874.

Lesions of the Basal Ganglia and Cortex in a 14-Year-Old Boy Who Died of Eastern Equine Encephalitis.

Deresiewicz RL et al. N Engl J Med 1997;336:1867-1874.

Clinical signs and symptoms at the time of hospital admission for 14 children with EEE, Massachusetts and New Hampshire, 1970–2010 Silverman, et al. EID 2013; 19: 194-201.

Sign or symptom	No. (%) patients
Fever	14 (100)
Seizure	10 (71)
Headache	9 (64)
Neck stiffness	9 (64)
Nausea/vomiting	9 (64)
Myalgia/arthralgia	4 (29)
Plantar reflex	4 (29)
Photophobia	4 (29)
Sore throat	2 (14)
Cranial nerve palsy	1 (7)
Abdominal pain	1 (7)
Diarrhea	0

Magnetic resonance images (MRIs) and computed tomography (CT) neuroradiographs showing lesions in brains of 3 children with eastern equine encephalitis. Silverman, et al. EID 2013; 19: 194-201.

Association of Length of Prodrome with Clinical Outcome in Children with Eastern Equine Encephalitis Silverman, et al. EID 2013; 19: 194-201.

Eastern Equine Encephalitis in Massachusetts

1831	Epidemic of brain disease in horses in Massachusetts
1931	Differentiated from other equine encephalitides
1933	Virus isolated
1933-36	Birds implicated as reservoir of virus
1938	Outbreak of "brain disease" in horses in Massachusetts (~ 300 cases)
1938-39	Outbreak of human EEE in Massachusetts (35 cases)
1947	Louisiana and Texas outbreaks
1955-56	Second Massachusetts outbreak (16 cases), aerial spraying, DDT
1957	Taunton Field Station of the USPHS
1969	Taunton Field Station closed, State Laboratory continues surveillance
1973	Equine vaccine
1973-75	Outbreak (7 cases), aerial spraying, malathion
1982-84	Outbreak (10 cases)
1990	Outbreak (3 cases), aerial spraying, malathion
2004-06	Outbreak (13 cases), aerial spraying, sumithrin
2010	Record mosquito EEE isolations (2 cases), aerial spraying, sumithrin
2012	Record mosquito EEE isolations (7 cases), aerial spraying, sumithrin
2014 -18	Virtually no EEE activity, no human cases
2019	Record mosquito EEE isolations (12 cases), aerial spraying, sumithrin

EEE Transmission Cycle

 Passerine Birds serve as reservoirs for the virus.
Examples include: Red-winged Blackbirds, Blue Jays, and Chickadees

Potential Bridge Vectors

Main amplification vector in the EEE cycle

Adapted from: PC Matton, W Andrews, Bristol County Mosquito Control Project

Animals and people serve as dead-end host and are unable to pass the virus on

FIG. 2. Seasonal pattern and frequency of EEE virus isolations from & Culiseta melanura and transmission to Bobwhite quail, Pocomoke Cypress Swamp, Maryland, 1982.

Watts, et al. J Med Entomol 1982; 24:91-98

The Distribution of *Culiseta melanura*

Map by C. Roxanne Connelly, University of Florida.

Human Cases of EEE in Massachusetts			
	Cases	Deaths	Mortality (%)
1938-39	35	25	71
1955-56	16	9	56
1970	1	0	
1973-75	6	4	41
1982-84	10	3	
1990	3	1	
1992-1997	3	1	
2000	1	0	38
2001	1	0	
2004-2006	13	6	
2008	1	1	
2010	2	0	- 4 6
2011	2	1	
2012	7	3	
2013	1	1	
2014-2018	0	0	
2019	12	4	33
TOTAL	114	59	52

Human EEE Cases Massachusetts 1938-2019

Human EEE Cases by County of Residence, 1938-2013

EEE Cases by County of Residence, 1990-2012

EEE Cases by County of Residence, 2019

Eastern Equine Encephalitis Virus Neuroinvasive Disease Cases Reported in the U.S. by Year, 1964-2010 (CDC)

Eastern Equine Encephalitis Virus Neuroinvasive Disease Cases Reported by Year, U.S., 2009–2019

Eastern Equine Encephalitis Virus Neuroinvasive Disease Cases Reported by State, 1964-2010

Eastern Equine Encephalitis Virus Neuroinvasive Disease Cases Reported by State, 2009-2018

Eastern Equine Encephalitis Virus Neuroinvasive Disease Cases Reported by State, 2019

Proportions of Reported Human EEE Cases in the U.S. Above and Below the 37th Parallel

Massachusetts 1970-2018 Human EEE and EEEV Mosquito Isolates

Aerial Adulticide Spraying

Massachusetts 1970-2019 Human EEE and EEEV Mosquito Isolates

Risk Assessment Criteria for EEE in Massachusetts

*Pre-Season

- *****Significant EEE activity the previous year
- *Groundwater levels above normal, heavy rainfall
- Mild winter with insulating snow cover

* <u>Early Season</u>

- Exceptionally wet spring
- *Above average Cs. melanura densities
- *****EEE virus isolations in June or early July

* <u>In Season</u>

- *****Numerous mosquito pools EEEV positive (30-50)
- *****High minimum infection rates in *Cs. melanura* (> 2:1000)
- *****Early appearance of disease in horses or humans
- *****Any human case, particularly before late August

Timing of EEE Positive Mosquitoes

□ June/July □ August ■ Sept/Oct

Key to Color Coding on Risk Maps					
Risk What it Means		What You Should Do			
Remote	Multiple cases of human disease caused by EEE or WNV are considered <u>highly</u> <u>unlikely at this time</u> . No human, animal or mosquito infections have been identified in the area so far this year.	Repair screens Dump standing water twice weekly			
Low	Multiple cases of human disease caused by EEE or WNV are considered <u>unlikely</u> at this time. Infected mosquitoes <u>have been found</u> in the area this year, but no human or animal infections.	 Repair screens Dump standing water twice weekly Wear mosquito repellent when outdoors during peak mosquito hours (from dusk to dawn) Wear long sleeves and long pants when outdoors during peak mosquito hours (from dusk to dawn) Use mosquito netting on baby carriages and playpens outdoors Arrange neighborhood cleanups to get rid of mosquito breeding sites 			
Moderate	Multiple cases of human disease caused by EEE or WNV are considered <u>moderately likely at this time</u> . There have been multiple infected mosquitoes <u>this year</u> in addition to human or animal cases <u>last year</u> .	 Repair screens Dump standing water twice weekly Wear mosquito repellent when outdoors during peak mosquito hours (from dusk to dawn) Wear long sleeves and long pants when outdoors during peak mosquito hours (from dusk to dawn) Use mosquito netting on baby carriages and playpens outdoors Arrange neighborhood cleanups to get rid of mosquito breeding sites Be aware of stagnant water on private property (e.g. unused swimming pools) and consult the local board of health. 			
High	Multiple cases of human disease are considered <u>very likely at this time.</u> There have been infected mosquitoes repeatedly in the area or a human or animal case in the area this year.	 Repair screens Dump standing water twice weekly Wear mosquito repellent when outdoors during peak mosquito hours (from dusk to dawn) Wear long sleeves and long pants when outdoors during peak mosquito hours (from dusk to dawn) Use mosquito netting on baby carriages and playpens outdoors Arrange neighborhood cleanups to get rid of mosquito breeding sites Be aware of stagnant water on private property (e.g. unused swimming pools) and consult the local board of health. Avoid outside areas with obvious mosquito activity Adjust outdoor activity to avoid peak mosquito hours (from dusk to dawn) Avoid overnight camping near freshwater swamps where EEE activity is likely 			
Critical	Multiple cases of human disease are extremely likely at this time. There has been more than one human and/or animal case of disease or rapid escalation of indications of risk in the area this year.	 Repair screens Dump standing water twice weekly Wear mosquito repellent when outdoors during peak mosquito hours (from dusk to dawn) Wear long sleeves and long pants when outdoors during peak mosquito hours (from dusk to dawn) Use mosquito netting on baby carriages and playpens outdoors Arrange neighborhood cleanups to get rid of mosquito breeding sites Be aware of stagnant water on private property (e.g. unused swimming pools) and consult the local board of health. Avoid outside areas with obvious mosquito activity Adjust outdoor activity to avoid peak mosquito hours (from dusk to dawn) Avoid overnight camping near freshwater swamps where EEE activity is likely Consider cancelling or rescheduling outdoor gatherings, organized sporting events, etc. during peak mosquito hours 			

EEE Identifications in July by"Bird-Biting" and "Mammal-Biting" Mosquito Species

Preliminary Control Efficacy Aerial Application, August 5-7, 2010

Estimated Percent

	Mosquito Reduction
Overall	77 - 87
Culiseta melanura	39 - 96
Coquillatidia perturbans	87 - 89

Mosquito EEE Infection Rate

Before spray:	25.1/1,000 pools
----------------------	------------------

Since spray: 13.5/1,000 pools

Estimated Efficacy Rates of Aerial Adulticide Application July 20-22, 2012

	2012
Overall Mosquito Population Reduction	42-81%
Bird-biting Mosquito Population Reduction (primarily <i>C. melanura</i>)	36-80%
Mammal-biting Mosquito Population Reduction (primarily <i>C. perturbans</i> and <i>O. canadensis</i>)	14-84%

Massachusetts EEE Expert Panel 2011-2012

Experts in the fields of

- mosquito control
- □ toxicology,
- □ ecology,
- □ climate change,
- public health
- □ infectious disease were invited to participate.

Panelists were chosen specifically because they were not already involved in the Massachusetts arbovirus surveillance and mosquito control processes, and could be expected to provide fresh perspectives.

EEE Identifications in July by"Bird-Biting" and "Mammal-Biting" Mosquito Species

Massachusetts EEE Risk Categories

August 21-25, 2019

August 8-12, 2019

September 18-24, 2019

August 26-27, 2019

September 10-18, 2019

September 16-17, 2019

West Nile Virus

- * Isolated from woman with fever, West Nile region, Northern Province, Uganda, 1937
- * First epidemic described: Israel, 1950
- * Multiple strains, widely endemic Middle East, Africa, Asia, Europe, Australia, and North America
- Stress Broad range of hosts: birds, mammals
- * Human infection common in endemic areas
- ***** First appearance in North America, Summer of 1999
 - * 62 confirmed and probable cases, 7 deaths
 - * Serosurveys suggest widespread, unrecognized, human infection
 - ***** Severe disease and deaths in birds and horses

West Nile Virus Infection Human Disease

- ***** Incubation period 5 to 15 days
- Headache, sore throat, fatigue, myalgia, arthralgia, fever (moderate to high), conjunctivitis, lymphadenopathy
- * Rash (roseolar) more common than with other flaviviruses
- * Muscle weakness, often profound
- * Aseptic meningitis, encephalitis, meningoencephalitis
- * Myocarditis, hepatitis, pancreatitis
- * Mild and sub-clinical infection very common, agerelated severity

WNV Encephalitis/Infection and Clinical/Sub-Clinical Ratios

Area	Year(s)	Encephalitis/ Infection	Clinical/ Sub-Clinical
Israel	1950s	1:100	-
Romania	1996	1:331	-
Czechland	1997	-	1:1.6
NYC	1999	1:139	1:4.8
Staten Island	2000	1:157	
Suffolk Co., NY	2000	1:>121	

Culex pipiens

Culex restuans

en e

Tre-

Culex salinarius

Aedes vexans

West Nile Virus Activity, Massachusetts, 2000-2018

	Birds	Mosquitoes	Horses	Humans
2000	448	4	1	0
2001	1104 (46%)	25 (0.39%)	45	3
2002	575 (67%)	68 (1.10%)	2	25
2003	429 (72%)	48 (0.80%)	8	19
2004	8 (9%)	15 (0.19%)	0	0
2005	83 (27%)	99 (1.22%)	0	6
2006	57 (18%)	43 (0.50%)	0	3
2007	43 (19%)	65 (0.43%)	0	6
2008	63 (45%)	135 (2.95%)	0	1
2009	-	26 (0.76%)	1	0
2010	-	121 (3.4%)	1	7
2011	-	275 (6.0%)	1	6
2012	-	307 (4.5%)	2	33
2013	-	335 (5.5%)	2	8
2014	-	56 (1.1%)	0	6
2015	-	164 (3.6%)	0	9
2016	-	189 (2.9%)	0	16
2017		290 (5.3%)	0	6
2018		579 (9.8%)	2	49

Confirmed WNV Human Cases and the percentage of *Culex spp.* Mosquito Samples Positive for WNV in Massachusetts by Year: 2009-2018

Massachusetts WNV Risk Categories

West Nile Virus Laboratory Confirmation

- ***** WNV isolation (virus identified by IFA, neutralization, RT-PCR or sequencing)
- *** RT-PCR using multiple primers**
- Captured WNV antigen
- *** IgM by capture EIA**
- ***** IgG by EIA, HI or neutralization test
- * Identification of WNV antigen or genome in tissue

Percent of Human WNV and EEE Cases in Massachusetts, 2001-2012, by Age Group

WNV

Jamestown Canyon Virus

- * California serogroup orthobunyavirus
- * First identified in *Culiseta* species in Colorado
- * Related to Inkoo virus in Northern Europe
- * Found in mosquitoes in Connecticut for many years, widely distributed in U.S.
- * Natural cycle presumably similar to EEE, with deer as a reservoir host
- * Human seroprevalence of 4-10% in New England
- * Clinical illness non-specific ranging from "summer virus" to encephalitis
 - * Identified patients with clinical illness tend to be older than patients with LaCrosse virus infection
- * 1-2 cases per year confirmed in Massachusetts

Seroprevalence of Jamestown Canyon Virus among Humans, Nova Scotia, Canada, 2012 Patriquin G, et al. EID 2018; 24: 118-121

Characteristic	No. tested	No. (%) positive	Adjusted proportion (95% CI)	p value*
Sex				0.013
Μ	151	51 (33.8)	26.8 (19.9-35.0)	
F	150	30 (20.0)	14.4 (9.3–21.5)	
Age group, y		× 1		0.024
10–19	43	6 (14.0)	10.8 (4.0-25.8)	
20–29	54	13 (24.1)	20.4 (11.0-34.5)	
30–39	52	12 (23.1)	14.1 (6.9–26.7)	
40–49	60	15 (25.0)	20.4 (1.6–33.3)	
50-59	61	21 (34.4)	27.8 (17.1–41.7)	
60–64	31	14 (45.2)	33.0 (17.7–53.0)	
District Health Authority		X E	· · · · · ·	0.004
1	81	39 (48.2)	48.2† (37.4–59.1)	
2–8	115	26 (22.6)	22.6† (15.8–31.4)	
9	105	16 (15.2)	15.2† (9.5–23.5)	
Total no.	301	81 (26.9)	20.6 (16.0-25.9)	
*Pearson χ^2 for test by DHA; con	rrected Pearson χ ² for tes	t by sex; logistic regression test for	or trend by age group.	

†Adjustment was unnecessary for estimates made by the DHA because weighting was done by this authority.

ZIIKA FOREST. PROPERTY OF UGANDA VIRUS RESEARCH INSTITUTE (UVRI) P.O. BOX 49 ENTEBBE TEL: 0414-720631

Interpretation of results of antibody testing for suspected Zika virus infection - United States, 2016

Zika virus and dengue virus IgM ELISA	Zika virus PRNT	Dengue virus PRNT	Interpretation	
Positive or equivocal (either assay)	≥10	<10	Recent Zika virus infection ⁺	
Positive or equivocal (either assay)	<10	≥10	Recent dengue virus infection ⁺	
Positive or equivocal (either assay)	≥10	≥10	Recent flavivirus infection; specific virus cannot be identified [†]	
Any result (either or both assays)	<10	<10	No evidence of Zika virus or dengue virus infection	
Inconclusive in one assay AND inconclusive or negative in the other	≥10	<10	Evidence of Zika virus infection; timing cannot be determined [§]	
Inconclusive in one assay AND inconclusive or negative in the other	<10	≥10	Evidence of dengue virus infection; timing cannot be determined [§]	
Inconclusive in one assay AND inconclusive or negative in the other	≥10	≥10	Evidence of flavivirus infection; specific virus and timing cannot be determined [§]	

Peterson LR, Epstein JS. Tansfusion 2014; 54:1911-1915.

Confirmed Cases of Dengue Reported in Massachusetts Residents

Confirmed Cases of Chikungunya and Zika Virus Infection Reported in Massachusetts Residents

Transmission of Eastern Equine Encephalitis (EEE) Virus, West Nile Virus (WNV) and Zika Virus – Voctors and Vector Characteristics							
	EEE	WNV	Zika, Dengue, Chikungunya				
Virus host reservoir	Birds	Birds	Humans				
Amplifying vector(s)							
Primary species	Culiseta melanura	Culex species	 Aedes aegypti A. albopictus 				
Breeding habitat	White cedar/red maple swamp	Puddles and containers, dirty water	Containers				
Transmitting vector(s) for humans							
Primary species	<i>Coquillettidia perturbans, Aedes vexans</i> , other bridge mosquitoes	<i>Culex</i> species	 Aedes aegypti A. albopictus 				
Primary host	Mammals and birds	Birds	 Humans Mammals 				
Breeding habitat	Cattail swamps, flood plain	Puddles and containers, dirty water	Containers				
Habitat of adults	Rural	Tree canopy, ubiquitous	Peridomestic				
Biting habits	Dawn/dusk, outdoors; one host meal	Dawn/dusk, outdoors; one host meal	ors; one All day, indoor/outdoor; multiple host meal				

Diagram of an Autocidal Gravid Ovitrap used to attract and capture female *Aedes aegypti* mosquitoes

Mackay AJ, Amador M, Barrera R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit Vectors 2013;6:225.

Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing *Aedes Aegypti* Mosquito Trap Intervention Studies - Salinas and Guayama, Puerto Rico, November 2015 - February 2016 MMWR, May 13, 2016 / 65(18)

Prevention

- * Reduce mosquito exposure
 - Window and door screens
 - * Mosquito netting
 - Staying indoors at peak mosquito times
- Reduce mosquito bites
 - * Clothing
 - * Repellents
 - * DEET
 - * Picaridin
 - * Oil of lemon eucalyptus
 - * Permethrin

***** Reduce mosquitoes

- ***** Reduce standing water
- * Mosquito control
 - * Reducing breeding environment
 - * Larviciding
 - * Adulticiding

