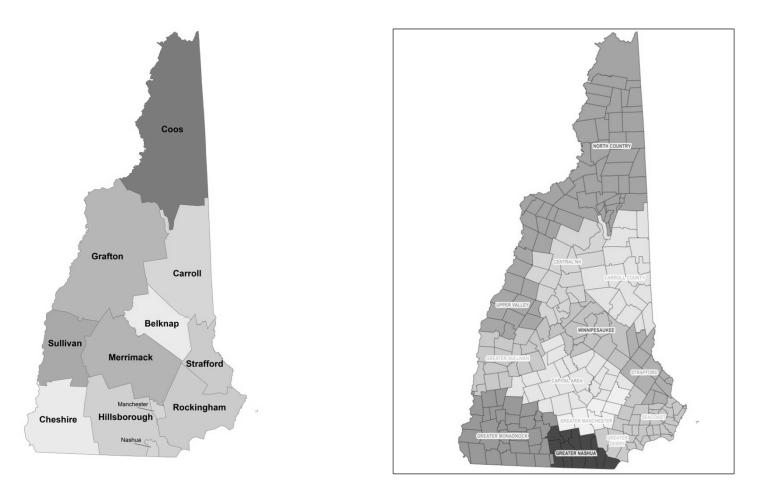
Using raking to reweight the New Hampshire BRFSS for substate estimates

Michael Laviolette, PhD, MPH Public Health Statistician New Hampshire Department of Health and Human Services Bureau of Public Health Statistics and Informatics


> Northeast Epidemiology Conference October 19, 2017 Northampton, MA

New Hampshire regions for surveillance

Counties and Major Cities

Public Health Regions

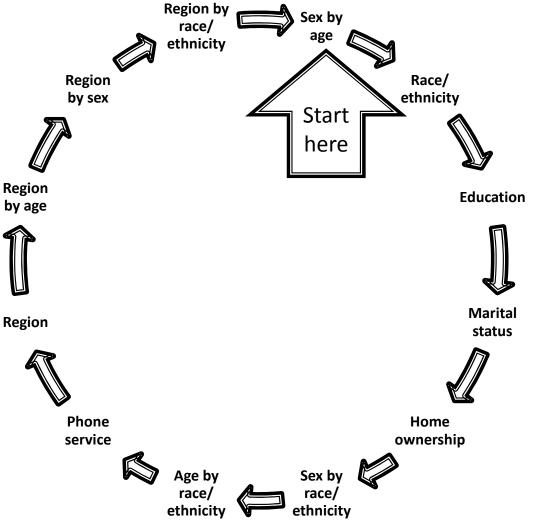
Objective: weight New Hampshire BRFSS for direct substate estimates

Raking

- Adjusts weights of sample survey so that sample demographics match those of target population
- Introduced with 2011 BRFSS, along with surveying mobile phones
- Used to adjust estimates for undercoverage and response bias
- Methodology dates to 1940's, but only feasible on large scale with modern computing
- Also known as "iterative proportional fitting" or "sample balancing"

Simple example of raking

- Employee satisfaction survey of 200 employees out of 10,000
- Sample was simple random sample, with each respondent assigned weight of 50
- Population of employees consists of 3800 men, 6200 women
- Of all employees, 1600 are under age 30, 6800 are age 30-44, and 1600 are age 45 and older
- Use raking to make total sample weights for age and sex, respectively, match those of population


Simple example of raking (2)

Sex/Age	< 30	30-44	45+	Row Total	Target
Male	800	3800	1000	5600	3800
Female	800	3000	600	4400	6200
Col Total	1600	6800	1600	Initial	
Target	2000	5000	3000		
Sex/Age	< 30	30-44	45+	Row Total	Target
Male	650.08	1894.38	1335.75	3880.21	3800
Female	1349.92	3105.62	1664.25	6119.79	6200
Col Total	2000	5000	3000	Iteration 1	
Target	2000	5000	3000		
Sex/Age	< 30	30-44	45+	Row Total	Target
Male	635.29	1854.65	1310.67	3800.61	3800
Female	1364.71	3145.35	1689.33	6199.39	6200
Col Total	2000	5000	3000	Iteratio	n 2
Target	2000	5000	3000	iteratio	лг∠

Adjust row and column totals so that all totals are within specified tolerance of targets

Raking on multiple dimensions

Basic principle is same as with two dimensions (or "margins"), but computationally intensive. **Dimensions** are adjusted one at a time. Process continues up to 125 times, or until total weights of each dimension converge to population estimates.

Raking dimensions

- CDC 1 Sex by age
 - 2 Race/Hispanic origin
 - 3 Education
 - 4 Marital status
 - 5 Home tenure
 - 6 Sex
 - 7 Age
 - 8 Telephone service
- NH 1 Sex by age
 - 2 Race/Hispanic origin
 - 3 Education
 - 4 Marital status
 - 5 Home tenure
 - 6 Sex
 - 7 Age
 - 8 Telephone service
 - 9 Public Health Region (PHR)

- 9 Region
- 10 Region by age
- 11 Region by sex
- 12 Region by race/Hispanic
- 13 County
- 14 County by race/Hispanic
- 15 County by age
- 16 County by sex
- 10 PHR by age
- 11 PHR by sex
- 12 PHR by race/Hispanic
- 13 County*
- 14 County* by race/Hispanic
- 15 County* by age
- 16 County* by sex
- 17 County* by education
- 18 County* by marital status

*with Manchester and Nashua broken out

Needed for raking

- State raking report from CDC
 - Control totals for all raking dimensions
 - Convergence information, including number of iterations
- Software for preprocessing and raking
 - R used for preprocessing (creating and collapsing variables, aggregating control totals)
 - SAS raking macro
 - Modified by CDC from original developed by Abt Associates
 - R "survey" package will also rake
- Population estimates for control totals

Approach

- 1. Reproduce CDC raking
- 2. Impute towns where needed
- 3. Choose additional or alternate dimensions for raking
- 4. Create variables in survey data corresponding to chosen dimensions, collapsing as needed
- 5. Construct target (control) totals for each dimension using population estimates
- 6. Modify SAS macro as needed and run
- 7. Once raking converges, fine-tune to reduce variation in new weights

Reproduce CDC raking

- Adjust initial weights for dual landline-cell frame
- Truncate weights so that overly large weights don't enter the raking
 - Split by region and telephone service type
 - CDC documentation not sufficiently detailed
- Run SAS raking macro
- Check resulting weights against final weights from survey data

Impute towns

- State-added question "What town do you live in?"
 - Town = County subdivision in New England states
- Respondent's town is identified as stated
 - If not available, primary zip code used
 - If neither is available, town imputed by hotdeck method from county imputed by CDC

Collapsing categories

- Rule of thumb: cells should have minimum count of 25
 - Sparsity in table can cause lack of convergence
- PHR by race/Hispanic origin: 26 categories collapsed to 15

HSDM Raking Margin 6: PHR by race/Hispanic origin		
HSDM06	Frequency	
North Country, All races	422	
Upper Valley, All races	237	
Central NH, All races	161	
Carroll County, All races	344	
Greater Sullivan, All races	318	
Winnipesaukee, All races	401	
Strafford County, All races	710	
Greater Monadnock, All races	574	
Capital Area, All races	739	
Greater Nashua, WH NH	873	
Greater Nashua, not WH NH	72	
Greater Manchester, WH NH	913	
Greater Manchester, not WH NH	66	
South Central, All races	544	
Seacoast, All races	648	

WH NH = "White, non-Hispanic"

Control totals

third_margin	Output Weight Sum of Weights	Target Total
Less than HS	87 , 625	87,619
HS Grad	314,744	314,670
Some College	330,012	329,989
College Grad	344,258	344,361

sixth_margin	Output Weight Sum of Weights	Target Total
Male, ALL RACES	527 , 605	527 , 605
Female, ALL RACES	549,033	549,033

All margin totals = 1,076,638

Constructing control totals

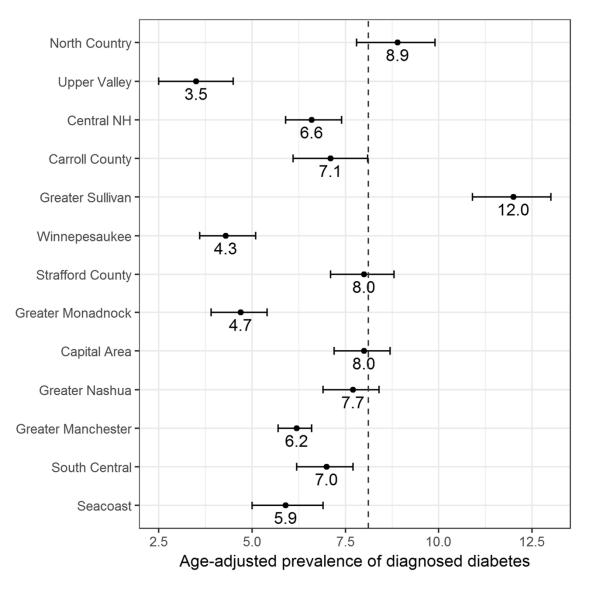
Need population estimates

- Use same control total as CDC whenever raking on same dimension
- Population estimate sources
 - Census publishes annual population estimates at county level by age group, race, Hispanic origin
 - NH purchases town-level data from Claritas
 - CDC also purchases data from Claritas
 - American Community Survey also used
 - For town level, need five-year summary tables

Control totals consistency

	eleventh_margin	Target Total
	Region 01, Male	43,663
	Region 01,Female	45,623
	Region 02, Male	47,215
	Region 02,Female	49,972
	Region 03, Male	50,003
	Region 03,Female	50,999
	Region 04, Male	158,444
Target Total	Region 04, Female	163 , 653
89,286	Region 05, Male	58,809
97,187	Region 05,Female	61,365
101,002	Region 06, Male	119,805
322,097		
120,174	Region 06,Female	124,024
243,829	Region 07, Male	49,666
103,063	Region 07, Female	53 , 397

	Target
sixth_margin	Total
Male, ALL RACES	527,605
Female, ALL RACES	549,033


ninth_margin	Target Total
Region 01	89,286
Region 02	97 , 187
Region 03	101,002
Region 04	322,097
Region 05	120,174
Region 06	243,829
Region 07	103,063

- All margins must add to population total
- All corresponding population totals must match, or raking will not converge
- Sometimes necessary to adjust totals to match (raking within raking)

Final processing

- R used for data pre-processing
 - Add-on package "VIM" for hotdeck imputation
 - Function "interaction" for composite dimensions
 - Functions from "tidyverse" collection of packages for collapsing categories and aggregating population data
 - Custom function for auxiliary adjustments
- Export data for SAS raking macro
- Run macro and troubleshoot in case of nonconvergence
- Convergence took 62 iterations for 2015 data and ran about 15 minutes

Application

Conclusions

- Raking produces a single working data set to produce direct prevalence estimates for NH major cities, counties, and public health regions
- Raking a state's BRFSS data for substate estimates is feasible, though extremely detailed
- Interest in small-area methods for model-based estimates by smaller geographies like town and census tract

References

Addinsoft corp. (2013). Raking a survey sample using XLSTAT. <u>http://www.xlstat.com/en/learning-center/tutorials/raking-a-survey-sample-using-xlstat.html</u>

Battaglia MP et al. (2009). Practical considerations in raking survey data.

http://www.abtassoc.us/presentations/raking survey data 2 JOS.pdf

Lumley T (2017). "survey: analysis of complex survey samples," R package version 3.32. <u>http://r-survey.r-forge.r-project.org/survey/index.html</u>

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <u>http://www.R-project.org/</u>

Discussion

Michael Laviolette PhD MPH State of New Hampshire Department of Health and Human Services Bureau of Public Health Statistics and Informatics michael.laviolette@dhhs.nh.gov

