The indoor microbiome, asthma and allergies

Jordan Peccia Associate Professor Environmental Engineering Yale University, U.S.A.

The incidence of asthma and allergies:

- One in five children have respiratory allergies;
- One in ten children have asthma and rates have doubled since 1980;
- 50% of Americans have some form of allergen sensitization. This number is only 7% among the Amish community in Indiana.(Holbreich, JACI 2012)
- In China, asthma prevalence is six times greater in urban children versus rural children. (Ma et al., 2009 Pediatric Pulomonology)

Living on a farm and drinking unpasturized milk

Reidler et al., (2001) The Lancet

Cost of DNA Sequencing:

Build catalogs of microbes on surfaces and in air

Yamamoto, (2015) *Environmental Sci. and Technol*.

Particle dynamics and the indoor microbiome

Can next-generation DNA sequencing methods improve upon asthma-microbe associations?

Fungal ecology in epidemiology studies

Karen C. Dannemiller, Mark J. Mendell, Janet M. Macher, Kazukiyo Kumagai, Jordan Peccia

Longitudinal birth cohort study

Enrolled 601 pregnant women living in the Salinas Valley and followed them (292) through age 12.

Asa Bradman, Nina Holland, Kim Harley, Brenda Eskenazi

Sequenced fungal populations in house dust of 13 asthmatic children and 28 control cases. House dust was collected and home moisture conditions were cataloged when children were 12 months.

Asthma development was associated with...

Fungal diversity is associated with the development of asthma in children

unadjusted Odds Ratio (OR) 4.80, 95% CI is 1.04 to 22.1

Dannemiller et al., Indoor Air (2012) DOI:101111 /ina.12072

Microbial diversity (richness) is protective against asthma development

Ege MJ et al. (2011) *N Engl J Med* Dannemiller, (2013) *Indoor air*

Can we design buildings to promote a health indoor microbiology

Can we design buildings to promote a health indoor microbiology?

CT and MA 200 home study –richness

Category	Mean nu	mber of	Mean number of Bacterial OTUs						
Cutegory	Fungal	OTUs							
	Yes	No	<i>p</i> -value	Yes	No	<i>p</i> -value			
More than 5 people in home	95.7	91.8	0.59	735	735	0.91			
More than 3 children in home	96.6	91.8	0.54	701	743	0.26			
Urban home (vs. Suburban)	90.1	96.2	0.33	707	772	0.031			
Single family (vs. Multifamily)	92.8	92.6	0.98	755	717	0.22			
Mold	94.0	91.8	0.73	738	728	0.75			
Water leaks	102	86.6	0.017	729	740	0.73			
AC use (yes or no)	92.6	94.4	0.86	737	712	0.63			
AC use (more than 2 months)	86.6	102.4	0.021	730	757	0.40			
Pets	101	86.2	0.015	772	704	0.024			

Dogs change the microbiome of your home

indoor outdoor ratio-occupancy

Hospodsky et al., (2014), Indoor Air

Ventilation correlation

Activity correlation

Mechanistic approaches: emissions

$QC_{out} + NE = QC + kVC$

Hospodsky et al., (2014), Indoor Air

Impacts of ventilation?

(Hospodsky, Yamamoto, Nazaroff, Miller, Peccia (2015) Indoor Air

Apportionment of sources of fungi in buildings

How close are we to being able to model and predict exposures?

Infiltration, exfiltration, mechanical ventilation, filtration (*AER*, outdoor concentrations, penetration and filtration efficiency)

Resuspension (occupancy, metabolic activity, shedding rates, surface materials, surface concentrations, **resuspension factor**)

Deposition (*rate coefficient*)

Impact of outdoor air concentration on indoor air concentration

Different paths for different microbes

Floor loading can strongly influence indoor air exposure

Flooring material impacts indoor air exposures

Floor loading [spores/m²]

Conclusions

Asthma development associated with low fungal diversity (richness)

Once health-relevant microbial targets are met, rational, mechanistic approaches can be used as a basis to design buildings that encourage or control exposures For more Information contact: Jordan.Peccia@yale.edu

Peccia Lab:

Karen Dannemiller

Naomichi Yamamoto

Denina Hospodski

Jing Qian

Collaborators:

William Nazaroff, UC Berkeley Mark Mendell, CDPH Janet Macher, CDHP Kazukiyo Kumagai, CDPH CHAMACOS cohort, UC Berkeley Leaderer group, Yale Public Health

Exposure to dust from homes with dogs attenuates the development of allergen-induced airways

Fujimora et al., (2014) PNAS

Metagenomics to get to bacteria and viral pathogens and functional genes

Herpesvirus									
Papillomavirus					200350				10000
Bocavirus							12020		00000
Adenovirus								100	1000
ττν			10000		1000				
Parvovirus									
Klassevirus									
Coronavirus									
Rotavirus								100	
Astrovirus		1111							
Parechovirus							- 12		
Saporviurs Mc10									
Hepatitis C									
HIV	-2								
Cosavirus									
Aichi virus	3년 "것								
Rhinovirus	**							22.60	
T-lymph. virus								10,000	
Coxsackievirus				1986	1				
Rubella virus									

Bibby and Peccia, (2013) Environmental Science and Technology

Taxa-specific aerodynamic diameter

Yamamoto et al. (2015) Journal Aerosol Science
Future Directions

- Air conditioners and microbial emissions
- Growth and gene function of microbes on building materials
- Improving frameworks for classifying mold in homes
- Ventilation and microbes in schools

Particle dynamics and the indoor microbiome

Structure for Ribosomal RNA:

		Eukaryotes	Bacteria
	Total	80S size	70S size
50S	LSU	60S	50S
	SSU	40S	30S
305	LSU rRNA	5.8S, 28S	5S, 23S
	SSU rRNA	18S	16S

transcribed intragenic spacer regions (important for fungi)

18S	ITS1	5.8S	ITS2	28S
-----	------	------	------	-----

Gamma Proteobacteria diversity and allergic status

"Compared with healthy individuals, atopic individuals had lower environmental biodiversity in the surroundings of their homes and significantly lower diversity of γ -Proteobacteria on their skin." Hanske, et al. PNAS 2012

Different features of the microbial communities were associated with SEVERITY based on asthma sub-type

	All children	Atopic children	Non-atopic children
	OR (95% CI)	OR (95% CI)	OR (95% CI)
Fungi			
Low fungal richness	1.29	1.05	1.61
	(0.70-2.38)	(0.45-2.46)	(0.66-3.93)
Allergenic species	2.53	2.71	2.38
	(1.28-5.00)	(0.99-7.39)	(0.94-6.01)
Allergenic genera	1.79	2.55	1.27
	(0.92-3.45)	(0.97-6.67)	(0.51-3.18)
Fungal concentration	2.02	1.69	2.40
	(1.14-3.56)	(0.77-3.75)	(1.06-5.44)
$(1-3)$ - β -D-glucan	0.55	0.47	0.60
	(0.24-1.26)	(0.13-1.68)	(0.20-1.83)

Taxa associated with allergic asthma

Taxa associated with severe asthma in allergic children			
Taxon	<i>p</i> - value	<i>q-</i> value	
Species			
Volutella colletotrichoides	0.0003	0.12	
Thelebolus microsporus	0.002	0.41	
Cryptococcus nyarrowii	0.007	0.66	
Trichosporon porosum	0.01	0.72	
Candida galli	0.02	0.72	
Cryptococcus skinneri	0.02	0.72	
Scoliciosporum umbrinum	0.040	0.72	
Mycocalicium victoriae	0.042	0.72	
Cryptococcus podzolicus	0.042	0.72	
Teratosphaeria ohnowa	0.042	0.72	
Lambertella tubulosa	0.046	0.72	
Pseudaegerita viridis	0.047	0.72	
Rhizocarpon petraeum	0.047	0.72	
Leptosphaerulina americana	0.047	0.72	
Epicoccum nigrum	0.047	0.72	
Genus			
Volutella	0.0001	0.044	
Thelebolus	0.0161	0.66	
Lambertella	0.0258	0.66	
Cochliobolus	0.0367	0.66	
Cordyceps	0.0474	0.66	
Phaeomoniella	0.0474	0.66	
Phialocephala	0.0474	0.66	
Rhizocarpon	0.0474	0.66	
Epicoccum	0.0474	0.66	

Housing factors that influence diversity

Dannemiller et al., Indoor Air (2012) DOI:101111 /ina.12072

How close are we to modeling?

Hospodsky et al. (2014) Indoor Air

Allergy and the environment

Hanske et al, PNAS, 2013 Danemiller 2014, in review

200 Home study

with Brian Leaderer, Janneane Gent

Yale School of Public Health

STAR EXIT INTERVIEW					
001	STUDY #: STUDNUM				
3111100	MONITORING PERIOD 5				
	RA:				
	DATE OF HOME				
	DATE OF LAST SUCCESSFUL INTERVIEW: LECOMN ELCOMN				
	DATE OF EXIT DATE OF EXIT EXDNN EXDDY EXDDY				
	Time Interview Began:				
CODER'S INITIALS	Time Interview Ended:				
	NUMBER OF ATTEMPTS TO REACH RESPONDENT				
(FOR ALL QUESTIONS)	RA: Was the Respondent named on the assignment card the person who completed this interview? (IF NO - MAKE CHANGES TO ASSIGNMENT CARD AND DESCRIBE CHANGE IN COMMENTS)				
M Don't Know					
ONE CHUI Phone: 203-764-93	ALLE UNVERSITY SCHOOL OF MENNINGEN ALL EMBEMOLOGY ALLE UNVERSITY SCHOOL OF MEDICINE RCH STREET, 6 ¹¹⁰ FLOOR, NEW HAVEN, CT 06510 175 or 1-800-41-INFANT (1-800-414-6326); Fax: 203-764-9378				

- 50 allergic asthma, severe
- **50** allergic asthma, non-severe
- **50** non-allergic asthma, severe
- **50** non-allergic asthma, non-severe

Describing microbial communities

- ~1500 nucleotides long
- a structural portion of the ribosome
- present in all organisms

evolved slowly and includes conserved, variable and hypervariable

SSU rRNA Alignment Forms the Tree of Life and a Basis for Identification

<u>rRNA-based Taxonomy</u>:

Domain

Phylum

Class

Order

Family

Genus

Species

Asthma, allergy and the environment

Microbial empirical associations between allergy and asthma development and the environment are moving in a "more defined" direction:

Further observations on moisture and diversity

Dannemiller et al., Indoor Air (2012) DOI:101111 /ina.12072

Culturing

Culturing	DNA methods	Build catalogs	Empirical association between microbes and buildings	
A	Ŗ	K	K	

Proteomic analysis of *A. fumigatus* allergens, effect of O₃

Allergen	Accession	Log ₂ fold	ANOVA
		Change	
Asp f 8	AFUA_2g10100	0.91	0.0079
Asp f 9	AFUA_5g13300	0.68	0.0138
Asp f 11	AFUA_5g04170	-0.29	0.0173
Asp f 13	AFUA_2g12630	0.63	0.0332
Asp f 18	AFUA_7g04930	-0.50	0.0432
Asp f 10	AFUA_2g03720	4.66	0.0519
Asp f 23	AFUA_2g11850	0.45	0.0877
Asp f 3	AFUA_6g02280	0.75	0.131
Alt a 4 homologue	AFUA_2g06150	-0.15	0.193
Asp f 22	AFUA_6g06770	-0.17	0.530
Alt a 10 homologue	AFUA_7g01000	0.23	0.585
Alt a 10 homologue	AFUA_4g08600	0.01	0.927

Effects of O₃ on *A. fumigatus* allergenicity (IgE binding)

Fungal community structure seems to matter for allergic asthma

Statistics: Look for Associations

(Hospodsky, Nazaroff, Peccia unpublished data)

A push for absolute quantitativeness

Absolute concentration taxa = qPCR total fungi X relative abundance taxa

cesarian section and allergies

Pistiner et al., (2008) JACI

When we adjust for confounders, the low diversity/asthma association is stronger

		Low Fungal Diversity and Asthma Development		
Potential Confounder	n (%)	OR	95% CI	
none	— -	4.80	1.04	22.10
Rainy Season	22 (58%)	6.96	1.27	38.23
Pets	5 (13%)	4.74	1.03	21.88
Other children	19 (50%)	4.83	1.04	22.29
Below poverty				
line	28 (74%)	5.54	1.11	27.59
<i>Moisture (>17)</i>	15 (39%)	4.79	1.04	22.07
<i>Moisture (>21)</i>	12 (32%)	4.68	1.01	21.65
<i>Moisture (>24)</i>	5 (13%)	6.43	1.15	35.80
Visible mold	11 (29%)	4.76	1.03	21.95
Two or more				
moisture				
indicators	12 (29%)	5.61	1.12	28.10

Adjusted logistic regression models for association between asthma development and low fungal diversity.

Dannemiller et al., Indoor Air (2012) DOI:101111 /ina.12072

Revolution/Evolution—DNA Sequencing to Identify Indoor Microorganisms

Jordan Peccia Environmental Engineering Yale University
Revolution

New Haven and Yale has nurtured great leaders

- New Haven and Yale invented the frisbees, bicycles, pizza, helicopters, cemeteries, hamburgers, American football, can openers, vulcanized rubber, lollipops, the dictionary
- Yale researchers published the first phylogenetic library of an air sample (Boreson et al, 2004 Atmos. Environ.) *,**

* Ok, the second. First was in 1996 by A. Wakefield, where she cloned air samples of *Pneumocystis carini i (jirovecii)*, using species specific primers. Wakefield, *J Clin Microbiol*, (1996). ** at the time of publication, the corresponding author was employed by Arizona State University, and had never heard of New Haven, CT

Fungal community structure seems to matter for allergic asthma

Multi-factorial disease. Hygiene hypothesis suggests that exposure to microbes (infectious or not) in early childhood helps to modulate the immune system and allow for its proper development.

Atopic or allergic asthma refers to a predisposition to developing type 1 hypersensitivity reactions

Papers on fungi in urban air don't cause revolutions:

- September 11, 2001. Anthrax in the mail, renewed interest in bioterrorism.
- Alfred P. Sloan Foundation became interesting the "background" indoor microbiome, and forced world leading microbial ecologist to work with engineers/building scientists.

Track sources of bacteria on toilet seats

Flores G. et al. (2011) PLoS ONE

Estimate bacterial diversity (richness) of surfaces in residential kitchens

Determine quantitative comparisons of different environments (dogs versus no pet)

Continuing to evolve

Limited standardization of sequence processing pipelines;

- Incorporation of building microbiome databases in new research studies;
- Improving data analysis for unraveling building-microbe relationships;
- Lack of absolute quantitativeness in DNA-based methods;
- Incorporate metagenomes and transcriptomics.

SSU rRNA Alignment Forms the Tree of Life and a Basis for Identification

rRNA-based Taxonomy:

Domain

Phylum

Class

Order

Family

Genus

Species

A move toward mechanisms

EMPIRICAL

- Large number of environments;
- Low sample density;
- Cursory building variables (RH, light, occupancy);
- Statistical frameworks.

MECHANISTIC

- Fewer buildings with spatial, temporal, and size fractionated sampling;
- DNA sequencing, metagenomics, transcriptomics, culturing, network analysis and other "big data" methods;
- Intense study of buildings (ventilation, energy consumption, human activity);
- Links to fundamentals in physics, chemistry, engineering and medicine (Particle dynamics, mass balances).

Transcriptomics? They are not all dead!

For more Information contact: Jordan.Peccia@yale.edu

House dust fungal diversity is important for Asthma Development

What if you already have asthma.....?

Asthma Conclusions – next gen. sequencing tools useful

- Associations between fungal diversity (richness) and asthma DEVELOPMENT
- Non-allergic asthma severity associated with total fungi, but not specific taxa in the fungal community
- Allergic asthma severity associated with allergens, and specific taxa in the fungal community.

Molecular tools can play an important role in asthma epidemiology by providing diversity (richness) analyses, concentrations of specific allergens, and opening up the fungal populations to consider the broad range of taxa that are present

targets

Jordan Peccia Environmental Engineering Yale University

Allergy, diversity, and Acinetobacter

Hanske et al, PNAS, 2013

-Richness -Allergens -Total fungi -Specific taxa (healthy, pathogen, moisture associated)

Associating targets with building characteristic

	n (yes)	Mean number of fungal OTUs			Mean number of bacterial OTUs		
Category		Yes	No	<i>P</i> -value	Yes	No	<i>P</i> -value
More than 5 people in home	49	95.7	91.8	0.59	735	735	0.91
More than 3 children in home	87	96.6	91.8	0.54	701	743	0.26
Urban home (vs. Suburban)	112	90.1	96.2	0.33	707	772	0.031
Single family (vs. Multifamily)	94	92.8	92.6	0.98	755	717	0.22
Mold	85	94.0	91.8	0.73	738	728	0.75
Water leaks	80	102	86.6	0.017	729	740	0.73
AC use (yes or no)	178	92.6	94.4	0.86	737	712	0.63
AC use (more than 2 months) ^a	105	86.6	102.4	0.021	730	757	0.40
Pets	85	101	86.2	0.015	772	704	0.024

Imagine the applications for industry?

What you get:

- A list of fungi including relative abundances. Typically 2,000 to 10,000 identifications per sample;
- Species level identifications: list of allergens, list of pathogens;
- Quantitative comparisons from one location or time-point to another;
- Diversity—How many different species of fungi are present;
- Ability to track the sources of fungi.

human DNA is in your home 107 Source Spores or cells per mg dust 10⁶ 80% Soil Water 10⁵ contribution 60% Mouth 104 Urine Average 0 %05 Gut 10³ ♦ Bacteria Skin 20% △ Fungi 10² 0% ^oHuman 10¹ 1% 10% 50% 90% 99% **Cumulative Percent** Health metrics: Do communities **<u>Comparisons</u>: How does your home compare** correspond with disease states with others PC1 (39%) 0.3 A 150 Asthma Case A) Control Number of Fungal OTUs 0.2 100 0.1 PC2 (16%) Non-flooded 0 or remediated 50 -0.1 homes Flooded -0.2 homes 0 -0.3 300 150 450

0.5

Number of Sequences

Raw data: lists of species present and abundances, Lists of allergens, and a source tracker

0

-0.5

Comparisons: how much fungi, bacteria and

What are the targets?

How do we integrate these methods and this knowledge with the building industry

- mold remediation and assessment
- Building design;
- Building maintenance

What do we know about how buildings impact the target presence and abundance?

Research

Practice

We are not alone in these types of observations

- Living on a farm is associated with a lower prevalence of asthma
- Diversity of bacterial and fungal exposure (mostly by culturing) is inversely related with the asthma risk

Determine the impact of building <u>ventilation</u> on airborne and surface microbial communities.

Estimate the impact of <u>cleaning</u> on surface and floor dust microbial communities.

Approach

qPCR total bacteria	Air exchange rate Occu	D _{NA s} 165, ITS upancy I	equencing
Emission rates	qPCR total fungi	Surface samples	outdoor air,
ΑΤΡ			ntrations taxa
RH, Temp	Cleaning regimes	con	specific sens

Cleaning approach (26 treatment and 26 control homes)

- Pre cleaning, t=0
- Post cleaning, t=6 months
- Post cleaning, t=12 months

• Microbial community development over time (door knobs, desks, floors)

ATP on desk surfaces pre and post cleaning

Ventilation Approach

Statistical and deterministic microbial analyses (26 homes, 2 seasons, perfluorocarbon tracer)

(Chan, Price et al. 2003, Chan, Nazaroff et al. 2005). *Ventilation sources + indoor emissions = deposition + ventilation losses*

Tribal home cleaning and ventilation study

We are focusing on tribal homes;

- Exploring to important factors on air and surface dust microbes: <u>ventilation</u> and <u>cleaning</u>;
- Applying both statistical and number balance data analysis approaches.
Asthma, allergy and the environment

Do we expect ventilation to be important

The need for baseline data to enable design

Jordan Peccia Environmental Engineering Yale University

Rational design

By continuing to produce data on taxa abundance, taxa size, and developing rate coefficients, we can produce models that PREDICT exposure and guide RATIONALE design.