THE THREAT OF EMERGING DRUG RESISTANCE IN TUBERCULOSIS

Maha R Farhat, MD MSc

Massachusetts General Hospital

Harvard Medical School

I have no financial or other potential conflicts of interest to disclose

OUTLINE

- Update on the epidemiology of TB drug resistance
- Success and challenges of new diagnostics
- Results of Genome Wide Association Studies and their implications for drug resistance diagnostics
- Overview and prospects of new therapeutics

THE GLOBAL TB BURDEN

 Between 1990-2013 Prevalence decreased by 41% Mortality decreased by 45%

 Between 2000-2013 Incidence decreased by 1.5%/year

Increase in global total for new TB cases and deaths with the use of improved national data

Decline in prevalence, incidence and mortality less than target in 4/6 world regions

• In 2013

9,000,000 new cases 1,500,000 deaths

TB BURDEN IN THE US

- 9,421 cases in 2014 (1.5% decrease compared with 2013)
- Lowest decline in incidence in >10 years
- 66% foreign born
- 550 deaths

DRUG RESISTANT TB

- 480,000 cases globally, 3.5% of new cases
- Several countries have serious epidemics
- Treatment duration: 18-24months long at 5-10x the cost of treating drug sensitive TB
- 136,000 or 45% of cases were diagnosed
- Only 70% of diagnosed cases receive treatment
- The cure rate on treatment is 48%

DRUG RESISTANT TB IN THE US

- 10% of TB is resisant to 1 or more drugs, 7% is resistant to INH
- 1% of TB in the US is MDR (91 cases in 2014)
- Increasingly MDR is diagnosed in the foreign born, 88% in 2014 vs 33% in 1993

 Drug resistance is estimated to be associated with 50 deaths annually (2013)

ADDRESSING THE MDR-TB CRISIS

- Prevention
- Infection control
- Expanding rapid diagnostics for TB/MDR-TB
- Providing immediate access to effective therapy

Prevent the development of drug resistance through high quality treatment of drug-susceptible TB

Provide immediate access to effective treatment and proper care

Expand rapid testing and detection of drug-resistant TB cases

Prevent transmission through infection control

Increase political commitment with financing

DRUG SENSITIVITY TESTING (DST):

Sputum collection

XPERT MTB/RIF

GENETIC BASIS OF DRUG RESISTANCE

TB DRUG RESISTANCE

		No. of isolates				A	
Drug	Locus	Resistant		Susceptible		Accuracy values	
6		With mutation	Without mutation	With mutation	Without mutation	Sensitivity (%)	Specificity (%)
RIF	rpoB	169 ^a	5	9	131	97.1	93.6
INH	katG inhA katG and/or inhA	181 35 192	31 177 20	0 0 0	102 102 102	85.4 16.5 90.6	100 100 100
EMB	embB	121 ^b	33 ^c	11^d	149 ^e	78.6	93.1
PZA	pncA	55	10	15 ^g	109 ^h	84.6	85.8
CIP and OFX	gyrA	80	18	5	211	81.6	97.7
KAN	ns eis ns or eis	64 32 96	47 79 15	2 6 8	201 197 195	57.7 28.8 86.5	99.0 97.0 96.1
AMK	ns	63	7	3	241	90.0	98.8
CAP	nrs tlyA nrs and/or tlyA	38 7 42 ⁱ	31 62 27	28 3 31	217 242 214	55.1 10.1 60.9	88.6 98.8 87.3
MDR (RIF and INH) rpoB and katG and/or inhA		148	15	NA	NA	90.8	94.7

TB DRUG RESISTANCE

		No. of isolates				A	
Drug	Locus	Resistant		Susceptible		Accuracy values	
		With mutation	Without mutation	With mutation	Without mutation	Sensitivity (%)	Specificity (%)
RIF	rpoB	169ª	5	9	131	97.1	93.6
INH	katG inhA katG and/or inhA	181 35 192	31 177 20	0 0 0	102 102 102	85.4 16.5 90.6	100 100 100
EMB	embB	121 ^b	33 ^c	11^d	149 ^e	78.6	93.1
PZA	pncA	55	10	15 ^g	109 ^h	84.6	85.8
CIP and OFX	gyrA	80	18	5	211	81.6	97.7
KAN	ns eis ns or eis	64 32 96	47 79 15	2 6 8	201 197 195	57.7 28.8 86.5	99.0 97.0 96.1
АМК	ms	63	7	3	241	90.0	98.8
CAP	rrs tlyA rrs and/or tlyA	38 7 42 ⁱ	31 62 27	28 3 31	217 242 214	55.1 10.1 60.9	88.6 98.8 87.3
MDR (RIF and INH)	rpoB and katG and/or inhA	148	15	NA	NA	90.8	94.7

-

TB DRUG RESISTANCE

		No. of isolates				A	
Drug	Locus	Resistant		Susceptible		Accuracy values	
		With mutation	Without mutation	With mutation	Without mutation	Sensitivity (%)	Specificity (%)
RIF	гроВ	169 ^a	5	9	131	97.1	93.6
INH	<i>katG</i> inhA katG and/or inhA	181 35 192	31 177 20	0 0 0	102 102 102	85.4 16.5 90.6	100 100 100
EMB	embB	121 ^b	33 ^c	11^d	149 ^e	78.6	93.1
PZA	pncA	55	10	15 ^g	109 ^h	84.6	85.8
CIP and OFX	gyrA	80	18	5	211	81.6	97.7
KAN	ns eis ns or eis	64 32 96	47 79 15	2 6 8	201 197 195	57.7 28.8 86.5	99.0 97.0 96.1
AMK	ms	63	7	3	241	90.0	98.8
CAP	rrs tlyA rrs and/or tlyA	38 7 42 ⁱ	31 62 27	28 3 31	217 242 214	55.1 10.1 60.9	88.6 98.8 87.3
MDR (RIF and INH) rpoB and katG and/or inhA		148	15	NA	NA	90.8	94.7

HOW GENETIC MUTATIONS ASSOCIATE WITH THE RESISTANCE PHENOTYPE?

- 1. Single mutation with large effect: *katG* S315T
- 2. Multiple mutations with cumulative effects: embB + Rv3806c
- 3. Mutations with no effect on MIC but improve bacterial fitness: *rpoB* + *rpoC*; *embB* + *Rv3792*

Pym A et al. Infec Imm 2002 Safi H et al. Nat Gen 2013 Comas I et al. Nat Gen 2011

POPULATION STUDY OF THE GENETICS OF DRUG RESISTANCE

Group of experts met 2-3 times to identify lead candidate genes for each drug.

Drug*	Resistant	Sensitive	Genes sequenced
INH	1219	136	katG, inhA (+promoter), fabG1, embB, kasA,
			ahpC (+promoter), oxyR', iniA, iniB, iniC, ndh
RIF	1163	206	гроВ
EMB	914	416	embB, embA, embC, iniA, iniB, iniC
PZA	611	374	pncA
SM	941	414	rpsL, rrs, gid
ETH	612	374	ethA, inhA
CIP	215	695	
LEVO	110	437	gyrA, gyrB
OFLX	69	201	-
AMK	228	729	
KAN	257	631	- [[5, []]
CAP	577	363	rrs, rrl, tlyA
PAS	78	849	thyA
CYS	8	855	alr, ddl
Total	1397		

Diagnostic Performance of the Genotype for DR Prediction

Farhat et al. Under review

Drug	Selected Mutations		
Isonaizid	19		
Rifampicin	14		
Pyrazinamide	124		
Ethambutol	18		
Streptomycin	39		
Ethionamide	20		
Kanamycin	3		
Capreomycin	5		
Amikacin	2		
Ciprofloxacin	7		
Levofloxacin	8		
Ofloxacin	6		
p-aminosalicylic acid	4		
Total	250		

GENOTYPE-WIDE ASSOCIATION STUDIES

- What?
 - Association of individual mutations or genomic regions with the phenotype of interest
- Why?
 - Allow for hypothesis free research around a measurable heritable phenotype
 - Relevant heritable phenotypes include drug resistance, virulence, transmissibility, organ tropism and more.
 - Demonstrated success of GWAS for the study of human disease and several pathogens
 - Genomic Data is now more accurate than ever, more abundant, and easy to obtain.

M. tuberculosis Genomes Sequenced by Year

Farhat et al. Nat Gen 2013

CONVERGENCE OF CHANGES ALONG THE PHYLOGENETIC TREE

RESULTS

Convorgent Gone/Site	Description	Permutation p- Nucleotide		
Convergent Gene/ Site	Description	value	Site	
katG	catalase-peroxidase	0.00000	944GC	
rpoB	RNA polymerase beta chain	0.00071	1349CT, 1304AT	
rpsL	30S ribosomal protein S12	0.00075	128AG	
rrs	16S ribosomal RNA	0.00105	1401AG	
embB	membrane indolylacetylinositol arabinosyltransferase	0.00841	916AG, 918GA	
pncA	pyrazinamidase/nicotineamidedase	0.00000	multiple	
gid	glucose-inhibited division protein B	0.00003	multiple	
ethA	monoxygenase	0.00073	multiple	
gyrA	DNA gyrase subunit A	0.00410	multiple	
inhA promoter	NADH-dependent enoyl-[acyl-carrier- protein] reductase promoter	0.011	multiple	
eis promoter	enhanced intracellular survival protein	0.00200	multiple	

MYCOBACTERIAL CELL WALL

ALLELIC EXCHANGE

Coming to an office/lab near you: The USB Sequencer

New Tuberculosis Drugs 2012

Bedaquiline

Delamanid

> PRESS RELEASES:

First New TB Drug Approved In 50 Years Must Be Made Widely Available

December 31, 2012

Works On Drug Resistant Forms Of The Disease; MSF Calls For Rapid Registration In Countries With High Drug-Resistant TB Burden

An important new TB treatment approved by the US Food and Drug Administration must be made available in countries with high levels of the drug-resistant form of the disease.

NEW DRUG PIPELINE HIGHLIGHTS

- Nitroimidazole:
 - PA-824 (Pretomanid)
 - TBA-354
 - Delamanid
- ATP Synthase inhibitors
 - Bedaquiline (TMC207) a diaryquinoline
- Oxazolidinones:
 - Linezolid
 - Sutezolid

REFERENCES:

- 1. WHO Global TB Report and Supplement on MDR 2014
- 2. Centers for Disease Control. Tb-trends 2014
- 3. Centers for Disease Control. Antibiotic Resistance Threats in the United States, 2013
- 5. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lönnroth K. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. Eur Respir J. 2014 Jun;43(6):1763–75.
- 6. Diacon AH et al. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline. N Engl J Med 2014;371:723-732

Clinical Course of the 14-Year-Old Patient with Fulminant Meningoencephalitis

Wilson et al. NEJM 2014